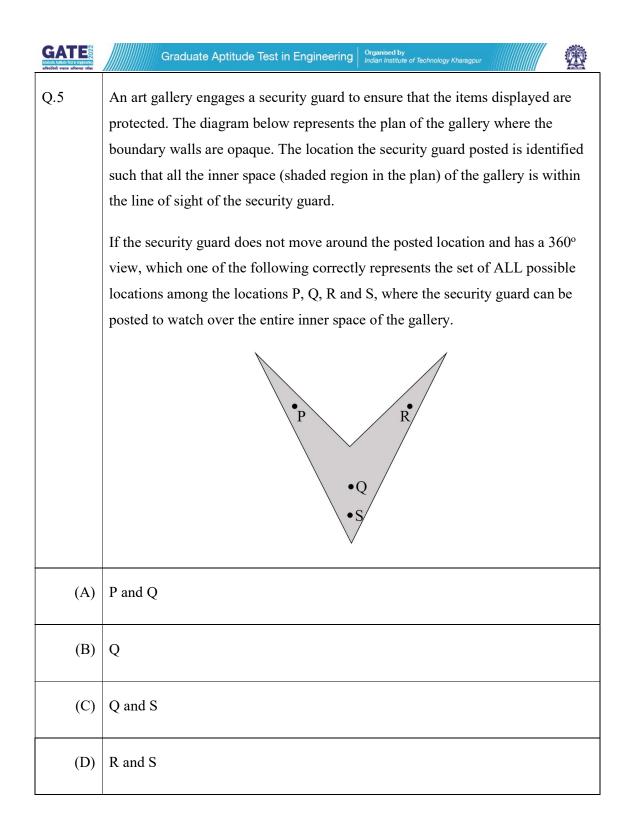


GATE 2022 General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark each.

Q.1	Mr. X speaks Japanese Chinese.
(A)	neither / or
(B)	either / nor
(C)	neither / nor
(D)	also / but


Q.2	A sum of money is to be distributed among P, Q, R, and S in the proportion 5 : 2 : 4 : 3, respectively. If R gets ₹ 1000 more than S, what is the share of Q (in ₹)?
(A)	500
(B)	1000
(C)	1500
(D)	2000

GATE जनवार्यः Açtilada Tierd in Erginasaring वनिषाविधनी स्थानक वनिवनना स्टीस	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.3	A trapezium has vertices marked as P, Q, R and S (in that order anticlockwise). The side PQ is parallel to side SR.
	Further, it is given that, $PQ = 11$ cm, $QR = 4$ cm, $RS = 6$ cm and $SP = 3$ cm.
	What is the shortest distance between PQ and SR (in cm)?
(A)	1.80
(B)	2.40
(C)	4.20
(D)	5.76

Q.4	The figure shows a grid formed by a collection of unit squares. The unshaded
	unit square in the grid represents a hole.
	\leftarrow \rightarrow What is the maximum number of squares without a "hole in the interior" that can be formed within the 4 × 4 grid using the unit squares as building blocks?
(A)	15
(B)	20
(C)	21
(D)	26

Т

Г

Q. 6 – Q. 10 Carry TWO marks each.

Q.6	Mosquitoes pose a threat to human health. Controlling mosquitoes using chemicals may have undesired consequences. In Florida, authorities have used genetically modified mosquitoes to control the overall mosquito population. It remains to be seen if this novel approach has unforeseen consequences. Which one of the following is the correct logical inference based on the information in the above passage?
(A)	Using chemicals to kill mosquitoes is better than using genetically modified mosquitoes because genetic engineering is dangerous
(B)	Using genetically modified mosquitoes is better than using chemicals to kill mosquitoes because they do not have any side effects
(C)	Both using genetically modified mosquitoes and chemicals have undesired consequences and can be dangerous
(D)	Using chemicals to kill mosquitoes may have undesired consequences but it is not clear if using genetically modified mosquitoes has any negative consequence

Q.7	Consider the following inequalities. (i) $2x - 1 > 7$ (ii) $2x - 9 < 1$ Which one of the following expressions below satisfies the above two inequalities?
(A)	$x \leq -4$
(B)	$-4 < x \le 4$
(C)	4 < x < 5
(D)	$x \ge 5$

Q.8	Four points P(0, 1), Q(0, -3), R(-2 , -1), and S(2 , -1) represent the vertices of a quadrilateral.
	What is the area enclosed by the quadrilateral?
(A)	4
(B)	$4\sqrt{2}$
(C)	8
(D)	8√2

Q.9	In a class of five students P, Q, R, S and T, only one student is known to have copied in the exam. The disciplinary committee has investigated the situation and recorded the statements from the students as given below.
	Statement of P: R has copied in the exam.
	Statement of Q: S has copied in the exam.
	Statement of R: P did not copy in the exam.
	Statement of S: Only one of us is telling the truth.
	Statement of T: R is telling the truth.
	The investigating team had authentic information that S never lies.
	Based on the information given above, the person who has copied in the exam is
(A)	R
(B)	Р
(C)	Q
(D)	Т

Q.10	Consider the following square with the four corners and the center marked as P, Q, R, S and T respectively.
	Let X, Y and Z represent the following operations:
	X: rotation of the square by 180 degree with respect to the S-Q axis.
	Y: rotation of the square by 180 degree with respect to the P-R axis.
	Z: rotation of the square by 90 degree clockwise with respect to the axis perpendicular, going into the screen and passing through the point T.
	Consider the following three distinct sequences of operation (which are applied in the left to right order).
	(1) XYZZ
	(2) XY (3) ZZZZ
	Which one of the following statements is correct as per the information provided above?
(A)	The sequence of operations (1) and (2) are equivalent
(B)	The sequence of operations (1) and (3) are equivalent
(C)	The sequence of operations (2) and (3) are equivalent
(D)	The sequence of operations (1), (2) and (3) are equivalent

Q.11 – Q.35 Carry ONE mark Each

Q.11	Let M be a 2 × 2 real matrix such that $(I + M)^{-1} = I - \alpha M$, where α is a non-zero real number and I is the 2 × 2 identity matrix. If the trace of the matrix M is 3, then the value of α is
(A)	$\frac{3}{4}$
(B)	$\frac{1}{3}$
(C)	$\frac{1}{2}$
(D)	$\frac{1}{4}$

	2022 Statistics (ST)
Q.12	Let $\{X(t)\}_{t\geq 0}$ be a linear pure death process with death rate $\mu_i = 5i, i = 0, 1,, N, N \geq 1$. Suppose that $p_i(t) = P(X(t) = i)$. Then the system of forward Kolmogorov's equations is
(A)	$\frac{dp_i(t)}{dt} = 5(i+1)p_{i+1}(t) + 5i p_i(t) \text{and} \frac{dp_N(t)}{dt} = 5Np_N(t)$
	for $i = 0, 1, 2,, N - 1$ with initial conditions $p_i(0) = 0$ for $i \neq N$, and $p_N(0) = 1$
(B)	$\frac{dp_i(t)}{dt} = 5(i+1)p_{i+1}(t) - 5i p_i(t) \text{and} \frac{dp_N(t)}{dt} = -5Np_N(t)$
	for $i = 0, 1, 2,, N - 1$ with initial conditions $p_i(0) = 0$ for $i \neq N$, and $p_N(0) = 1$
(C)	$\frac{dp_i(t)}{dt} = 5(i+1)p_{i+1}(t) + 5i p_i(t) \text{and} \frac{dp_N(t)}{dt} = 5Np_N(t)$
	for $i = 0, 1, 2,, N - 1$ with initial conditions $p_i(0) = 1$ for $i \neq N$, and $p_N(0) = 0$
(D)	$\frac{dp_i(t)}{dt} = 5(i+1)p_{i+1}(t) - 5i p_i(t) \text{and} \frac{dp_N(t)}{dt} = -5Np_N(t)$
	for $i = 0, 1, 2,, N - 1$ with initial conditions $p_i(0) = 1$ for $i \neq N$, and $p_N(0) = 0$

GATE 2022 Statistics (ST)		
Q.13	Let S^2 be the variance of a random sample of size $n > 1$ from a normal population with an unknown mean μ and an unknown finite variance $\sigma^2 > 0$. Consider the following statements:	
	(I) S^2 is an unbiased estimator of σ^2 , and S is an unbiased estimator of σ . (II) $\left(\frac{n-1}{n}\right)S^2$ is a maximum likelihood estimator of σ^2 , and $\sqrt{\frac{n-1}{n}}S$ is a maximum likelihood estimator of σ .	
	Which of the above statements is/are true?	
(A)	(I) only	
(B)	(II) only	
(C)	Both (I) and (II)	
(D)	Neither (I) nor (II)	

GATE 2	2022 Statistics (ST)
Q.14	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function defined by
	$f(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$
	Then which one of the following statements is true?
(A)	f is bounded and $\frac{\partial f}{\partial x}$ is unbounded on \mathbb{R}^2
(B)	f is unbounded and $\frac{\partial f}{\partial x}$ is bounded on \mathbb{R}^2
(C)	Both f and $\frac{\partial f}{\partial x}$ are unbounded on \mathbb{R}^2
(D)	Both f and $\frac{\partial f}{\partial x}$ are bounded on \mathbb{R}^2

GATE 2022 Statistics (ST)		
Q.15	Let $X_1, X_2,, X_n$ be a random sample from a distribution with cumulative distribution function $F(x)$. Let the empirical distribution function of the sample be $F_n(x)$. The classical Kolmogorov-Smirnov goodness of fit test statistic is given by	
	$T_n = \sqrt{n} D_n = \sqrt{n} \sup_{-\infty < x < \infty} F_n(x) - F(x) .$	
	Consider the following statements:	
	(I) The distribution of T_n is the same for all continuous underlying distribution functions $F(x)$.	
	(II) D_n converges to 0 almost surely, as $n \to \infty$. Which of the above statements is/are true?	
(A)	(I) only	
(B)	(II) only	
(C)	Both (I) and (II)	
(D)	Neither (I) nor (II)	

GATE 2	022	Statistics	(ST)

Q.16	Consider the following transition matrices P_1 and P_2 of two Markov chains:
	$\boldsymbol{P_1} = \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1/2 & 1/6 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \boldsymbol{P_2} = \begin{bmatrix} 1/6 & 1/3 & 1/2 \\ 1/4 & 0 & 3/4 \\ 0 & 1 & 0 \end{bmatrix}.$
	Then which one of the following statements is true?
(A)	Both P_1 and P_2 have unique stationary distributions
(B)	P_1 has a unique stationary distribution, but P_2 has infinitely many stationary distributions
(C)	P_1 has infinitely many stationary distributions, but P_2 has a unique stationary distribution
(D)	Neither P_1 nor P_2 has unique stationary distribution

GATE GATE 2	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
Q.17	Let $X_1, X_2,, X_{20}$ be a random sample of size 20 from $N_6(\mu, \Sigma)$, with $det(\Sigma) \neq 0$, and suppose both μ and Σ are unknown. Let
	$\overline{\boldsymbol{X}} = \frac{1}{20} \sum_{i=1}^{20} \boldsymbol{X}_i \qquad \text{and} \qquad \boldsymbol{S} = \frac{1}{19} \sum_{i=1}^{20} (\boldsymbol{X}_i - \overline{\boldsymbol{X}}) (\boldsymbol{X}_i - \overline{\boldsymbol{X}})^T.$
	Consider the following two statements:
	 (I) The distribution of 19 S is W₆(19, Σ) (Wishart distribution of order 6 with 19 degrees of freedom). (II) The distribution of (X₃ - μ)^TS⁻¹(X₃ - μ) is χ₆² (Chi-square distribution with 6 degrees of freedom).
	Then which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)

GATE 2	2022 Statistics (ST)
Q.18	Let $X_1, X_2,, X_{18}$ be a random sample from the distribution
	$f(x; \theta) = \begin{cases} \frac{2x}{\theta} e^{-x^2/\theta}, & x > 0, \\ 0, & x \le 0. \end{cases}$
	$(0, x \le 0.$
	Let $\chi^2_{\alpha,n}$ denote the value of a Chi-square random variable Y with n degrees of freedom such that $P(Y > \chi^2_{\alpha,n}) = \alpha$. If $x_1, x_2,, x_{18}$ is a realization of this random sample, then, based on the sufficient statistic $\sum_{i=1}^{18} X_i^2$, which one of the following is a 98% confidence interval for θ ?
(A)	$\left(\frac{2\sum_{i=1}^{18} x_i^2}{\chi_{0.01,36}^2}, \frac{2\sum_{i=1}^{18} x_i^2}{\chi_{0.99,36}^2}\right)$
(B)	$\left(\frac{2\sum_{i=1}^{18} x_i^2}{\chi_{0.01,18}^2}, \frac{2\sum_{i=1}^{18} x_i^2}{\chi_{0.99,18}^2}\right)$
(C)	$\left(\frac{\sum_{i=1}^{18} x_i^2}{\chi_{0.01,36}^2}, \frac{\sum_{i=1}^{18} x_i^2}{\chi_{0.99,36}^2}\right)$
(D)	$\left(\frac{\sum_{i=1}^{18} x_i^2}{\chi^2_{0.01,18}}, \frac{\sum_{i=1}^{18} x_i^2}{\chi^2_{0.99,18}}\right)$

GATE 2	GATE 2022 Statistics (ST)		
Q.19	Let $X_1, X_2,, X_n$ be a random sample from a population $f(x; \theta)$, where θ is a parameter. Then which one of the following statements is NOT true?		
(A)	$\sum_{i=1}^{n} X_i \text{ is a complete and sufficient statistic for } \theta, \text{ if}$ $f(x; \theta) = \frac{e^{-\theta} \theta^x}{x!}, x = 0, 1, 2,, \text{ and } \theta > 0$		
(B)	$(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}) \text{ is a complete and sufficient statistic for } \theta, \text{ if}$ $f(x; \theta) = \frac{1}{\sqrt{2\pi} \theta} e^{-\frac{1}{2\theta^{2}}(x-\theta)^{2}}, -\infty < x < \infty, \ \theta > 0$		
(C)	$f(x; \theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0$ has monotone likelihood ratio property in $\prod_{i=1}^{n} X_i$		
(D)	$X_{(n)} - X_{(1)} \text{ is ancillary statistic for } \theta \text{ if } f(x; \theta) = 1, \ 0 < \theta < x < \theta + 1, \text{ where}$ $X_{(1)} = \min\{X_1, X_2, \dots, X_n\} \text{ and } X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$		

	022 Statistics (ST)
Q.20	A random sample $X_1, X_2,, X_6$ of size 6 is taken from a Bernoulli distribution with the parameter θ . The null hypothesis $H_0: \theta = \frac{1}{2}$ is to be tested against the alternative hypothesis $H_1: \theta > \frac{1}{2}$, based on the statistic $Y = \sum_{i=1}^{6} X_i$. If the value of Y corresponding to the observed sample values is 4, then the <i>p</i> -value of the test statistic is
(A)	$\frac{21}{32}$
(B)	$\frac{9}{64}$
(C)	$\frac{11}{32}$
(D)	$\frac{7}{64}$

GATE 2	2022 Statistics (ST)
Q.21	Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers satisfying $\frac{8}{a_{n+1}} = \frac{7}{a_n} + \frac{a_n^2}{343}, \qquad n \ge 1$ with $a_1 = 3$ and $a_n < 7$ for all $n \ge 2$. Consider the following statements: (I) $\{a_n\}$ is monotonically increasing. (II) $\{a_n\}$ converges to a value in the interval [3, 7]. Then which of the above statements is/are true?
(A)	(I) only
(B)	(II) only
(C)	Both (I) and (II)
(D)	Neither (I) nor (II)
Q.22	Let M be any square matrix of arbitrary order n such that $M^2 = 0$ and the nullity of M is 6. Then the maximum possible value of n (in integer) is

	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE	2022 Statistics (ST)
Q.23	Consider the usual inner product in \mathbb{R}^4 . Let $u \in \mathbb{R}^4$ be a unit vector orthogonal to the subspace
	$S = \{(x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4 x_1 + x_2 + x_3 + x_4 = 0\}.$
	If $\boldsymbol{v} = (1, -2, 1, 1)^T$, and the vectors \boldsymbol{u} and $\boldsymbol{v} - \alpha \boldsymbol{u}, \alpha \in \mathbb{R}$, are orthogonal, then the value of α^2 (rounded off to two decimal places) is equal to
Q.24	Let $\{B(t)\}_{t\geq 0}$ be a standard Brownian motion and let $\Phi(\cdot)$ be the cumulative distribution function of the standard normal distribution. If
	$P\left(\left(B(2)+2B(3)\right)>1\right) = 1 - \Phi\left(\frac{1}{\sqrt{\alpha}}\right), \alpha > 0,$
	then the value of α (in integer) is equal to
Q.25	Let X and Y be two independent exponential random variables with $E(X^2) = \frac{1}{2}$ and $E(Y^2) = \frac{2}{9}$. Then $P(X < 2Y)$ (rounded off to two decimal places) is equal to
Q.26	Let <i>X</i> be a random variable with the probability mass function $p_X(x) = \left(\frac{3}{4}\right)^{x-1} \left(\frac{1}{4}\right)$, $x = 1, 2, 3, \dots$. Then the value of
	$\sum_{n=0}^{\infty} P(n < X \le n+3)$
	(rounded off to two decimal places) is equal to

Q.27	Let X_i , $i = 1, 2,, n$, be <i>i.i.d.</i> random variables from a normal distribution with mean 1 and variance 4. Let $S_n = X_1^2 + X_2^2 + \dots + X_n^2$. If $Var(S_n)$ denotes the variance of S_n , then the value of
	$\lim_{n \to \infty} \left(\frac{Var(S_n)}{n} - \left(\frac{E(S_n)}{n} \right)^2 \right)$
	(in integer) is equal to
Q.28	At a telephone exchange, telephone calls arrive independently at an average rate of 1 call per minute, and the number of telephone calls follows a Poisson distribution. Five time intervals, each of duration 2 minutes, are chosen at random. Let p denote the probability that in each of the five time intervals at most 1 call arrives at the telephone exchange. Then $e^{10}p$ (in integer) is equal to
Q.29	Let <i>X</i> be a random variable with the probability density function
	$f(x) = \begin{cases} c(x - [x]), & 0 < x < 3, \\ 0, & \text{elsewhere,} \end{cases}$
	where <i>c</i> is a constant and [<i>x</i>] denotes the greatest integer less than or equal to <i>x</i> . If $A = \left[\frac{1}{2}, 2\right]$, then $P(X \in A)$ (rounded off to two decimal places) is equal to
	Page 21

Q.33	A random sample of size 4 is taken from the distribution with the probability density function
	$f(x;\theta) = \begin{cases} \frac{2(\theta - x)}{\theta^2}, & 0 < x < \theta, \\ 0, & \text{elsewhere.} \end{cases}$
	If the observed sample values are 6, 5, 3, 6, then the method of moments estimate (in integer) of the parameter θ , based on these observations, is
Q.34	A company sometimes stops payments of quarterly dividends. If the company pays the quarterly dividend, the probability that the next one will be paid is 0.7. If the company stops the quarterly dividend, the probability that the next quarterly dividend will not be paid is 0.5. Then the probability (rounded off to three decimal places) that the company will not pay quarterly dividend in the long run is
Q.35	Let $X_1, X_2,, X_8$ be a random sample taken from a distribution with the probability density function
	$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4, \\ 0, & \text{elsewhere.} \end{cases}$
	0, elsewhere.
	Let $F_8(x)$ be the empirical distribution function of the sample. If α is the variance of $F_8(2)$, then 128α (in integer) is equal to

Г

GATE 2022 Statistics (ST)

Q.36 – Q.65 Carry TWO marks Each

Q.36	Let M be a 3×3 real symmetric matrix with eigenvalues $-1, 1, 2$ and the corresponding unit eigenvectors u, v, w , respectively. Let x and y be two vectors in \mathbb{R}^3 such that	
	$Mx = u + 2(v + w)$ and $M^2y = u - (v + 2w)$.	
	Considering the usual inner product in \mathbb{R}^3 , the value of $ x + y ^2$, where $ x + y $ is the length of the vector $x + y$, is	
(A)	1.25	
(B)	0.25	
(C)	0.75	
(D)	1	

GATE Grafinale Action Test in Expen	Graduate Aptitude Test in Engineering Organised by Indian Institute of Technology Kharagpur
GATE 2	2022 Statistics (ST)
Q.37	Consider the following infinite series:
	$S_1 := \sum_{n=0}^{\infty} (-1)^n \frac{n}{n^2 + 4}$ and $S_2 := \sum_{n=0}^{\infty} (-1)^n (\sqrt{n^2 + 1} - n).$
	Which of the above series is/are conditionally convergent?
(A)	S ₁ only
(B)	S ₂ only
(C)	Both S_1 and S_2
(D)	Neither S_1 nor S_2
Q.38	Let $(3, 6)^T$, $(4, 4)^T$, $(5, 7)^T$ and $(4, 7)^T$ be four independent observations from a bivariate normal distribution with the mean vector $\boldsymbol{\mu}$ and the covariance matrix $\boldsymbol{\Sigma}$. Let $\hat{\boldsymbol{\mu}}$ and $\hat{\boldsymbol{\Sigma}}$ be the maximum likelihood estimates of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$, respectively, based on these observations. Then $\hat{\boldsymbol{\Sigma}}\hat{\boldsymbol{\mu}}$ is equal to
(A)	$\left(\begin{array}{c} 3.5\\10\end{array}\right)$
(B)	$\begin{pmatrix} 7.5\\4 \end{pmatrix}$
(C)	$\begin{pmatrix} 4\\13.5 \end{pmatrix}$
(D)	$\left(\begin{array}{c}10\\3.5\end{array}\right)$

Q.39	Let $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ follow N ₃ ($\boldsymbol{\mu}, \boldsymbol{\Sigma}$) with $\boldsymbol{\mu} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 2 & a \\ 1 & a & 2 \end{bmatrix}$, where $a \in \mathbb{R}$. Suppose that the partial correlation coefficient between X_2 and X_3 , keeping X_1 fixed, is $\frac{5}{7}$. Then <i>a</i> is equal to
(A)	1
(B)	$\frac{3}{2}$
(C)	2
(D)	$\frac{1}{2}$

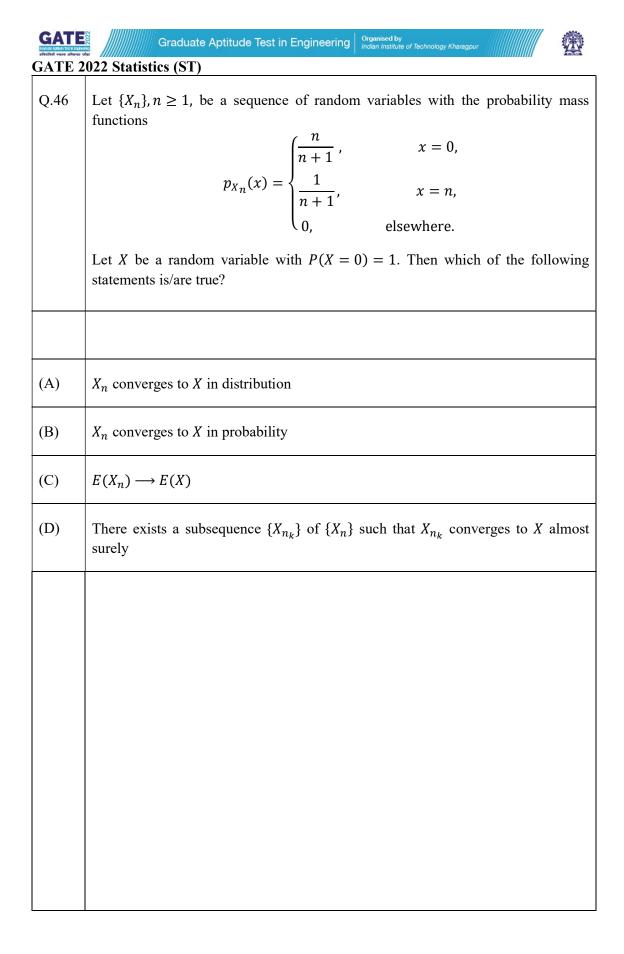
GATE 2022 Statistics (ST)		
Q.40	If the line $y = \alpha x$, $\alpha \ge \sqrt{2}$, divides the area of the region	
	$R := \{ (x, y) \in \mathbb{R}^2 0 \le x \le \sqrt{y}, 0 \le y \le 2 \}$	
	into two equal parts, then the value of α is equal to	
(A)	$\frac{3}{\sqrt{2}}$	
(B)	$2\sqrt{2}$	
(C)	$\sqrt{2}$	
(D)	$\frac{5}{2\sqrt{2}}$	

GATE 2022 Statistics (ST)	

Q.41	Let (X, Y, Z) be a random vector with the joint probability density function	
	$f_{X,Y,Z}(x, y, z) = \begin{cases} \frac{1}{3}(2x + 3y + z), & 0 < x < 1, 0 < y < 1, 0 < z < 1, \\ 0, & \text{elsewhere.} \end{cases}$	
	Then which one of the following points is on the regression surface of X on (Y, Z) ?	
(A)	$\left(\frac{4}{7},\frac{1}{3},\frac{1}{3}\right)$	
(B)	$\left(\frac{6}{7},\frac{2}{3},\frac{2}{3}\right)$	
(C)	$\left(\frac{1}{2},\frac{1}{3},\frac{2}{3}\right)$	
(D)	$\left(\frac{1}{2},\frac{2}{3},\frac{1}{3}\right)$	

	2022 Statistics (ST)
Q.42	A random sample X of size one is taken from a distribution with the probability density function
	$f(x; \theta) = \begin{cases} \frac{2x}{\theta^2}, & 0 < x < \theta, \\ 0, & \text{elsewhere.} \end{cases}$
	(0, elsewhere.
	If $\frac{x}{\theta}$ is used as a pivot for obtaining the confidence interval for θ , then which one of the following is an 80% confidence interval (confidence limits rounded off to three decimal places) for θ based on the observed sample value $x = 10$?
(A)	(10.541, 31.623)
(B)	(10.987, 31.126)
(C)	(11.345, 30.524)
(D)	(11.267, 30.542)

	022 Statistics (ST)
Q.43	Let X_1 , X_2 ,, X_7 be a random sample from a normal population with mean 0 and variance $\theta > 0$. Let
	$K = \frac{X_1^2 + X_2^2}{X_1^2 + X_2^2 + \dots + X_7^2}.$
	Consider the following statements:
	(I) The statistics K and $X_1^2 + X_2^2 + \dots + X_7^2$ are independent.
	(II) $\frac{7K}{2}$ has an <i>F</i> -distribution with 2 and 7 degrees of freedom.
	(III) $E(K^2) = \frac{8}{63}$.
	Then which of the above statements is/are true?
(A)	(I) and (II) only
(B)	(I) and (III) only
(C)	(II) and (III) only
(D)	(I) only


GATE	
Graduate Aptitude Test in Engineering	

GATE 2	2022 Statistics (ST)				
Q.44	Consider the following statements:				
	(I) Let a random variable <i>X</i> have the probability density function				
	$f_X(x) = \frac{1}{2}e^{- x }, \qquad -\infty < x < \infty.$				
	Then there exist <i>i.i.d.</i> random variables X_1 and X_2 such that X and $X_1 - X_2$ have the same distribution.				
	(II) Let a random variable <i>Y</i> have the probability density function				
	$f_Y(y) = \begin{cases} \frac{1}{4}, & -2 < y < 2, \\ 0, & \text{elsewhere.} \end{cases}$				
	(0, elsewhere.				
	Then there exist <i>i.i.d.</i> random variables Y_1 and Y_2 such that Y and $Y_1 - Y_2$ have the same distribution.				
	Then which of the above statements is/are true?				
(A)	(I) only				
(B)	(II) only				
(C)	Both (I) and (II)				
(D)	Neither (I) nor (II)				

GATE	2022	Statistics	(ST)
OTTL		Statistics	(21)

Q.45	Suppose $X_1, X_2,, X_n,$ are independent exponential random variables with the mean $\frac{1}{2}$. Let the notation <i>i</i> . <i>o</i> . denote 'infinitely often'. Then which of the following is/are true?
(A)	$P\left(\left\{X_n > \frac{\epsilon}{2}\log_e n\right\} i.o.\right) = 1 \text{ for } 0 < \epsilon \le 1$
(B)	$P\left(\left\{X_n < \frac{\epsilon}{2}\log_e n\right\} i.o.\right) = 1 \text{ for } 0 < \epsilon \le 1$
(C)	$P\left(\left\{X_n > \frac{\epsilon}{2}\log_e n\right\} i.o.\right) = 1 \text{ for } \epsilon > 1$
(D)	$P\left(\left\{X_n < \frac{\epsilon}{2}\log_e n\right\} \ i. o.\right) = 1 \text{ for } \epsilon > 1$

GATE	2022 Statistics (ST)
Q.47	Let M be any 3 × 3 symmetric matrix with eigenvalues 1, 2 and 3. Let N be any 3 × 3 matrix with real eigenvalues such that $MN + N^T M = 3I$, where I is the 3 × 3 identity matrix. Then which of the following cannot be eigenvalue(s) of the matrix N ?
(A)	$\frac{1}{4}$
(B)	$\frac{3}{4}$
(C)	$\frac{1}{2}$
(D)	$\frac{7}{4}$
Q.38	Let \boldsymbol{M} be a 3 × 2 real matrix having a singular value decomposition as $\boldsymbol{M} = \boldsymbol{U}\boldsymbol{S}\boldsymbol{V}^T$, where the matrix $\boldsymbol{S} = \begin{bmatrix} \sqrt{3} & 0 & 0\\ 0 & 1 & 0 \end{bmatrix}^T$, \boldsymbol{U} is a 3 × 3 orthogonal matrix, and \boldsymbol{V} is a 2 × 2 orthogonal matrix. Then which of the following statements is/are true?
(A)	The rank of the matrix M is 1
(B)	The trace of the matrix $\boldsymbol{M}^T \boldsymbol{M}$ is 4
(C)	The largest singular value of the matrix $(\mathbf{M}^T \mathbf{M})^{-1} \mathbf{M}^T$ is 1
(D)	The nullity of the matrix M is 1

GATE 2	2022 Statistics (ST)
Q.49	Let <i>X</i> be a random variable such that
	$P\left(\frac{a}{2\pi}X\in \mathbb{Z}\right)=1, a>0,$
	where \mathbb{Z} denotes the set of all integers. If $\phi_X(t), t \in \mathbb{R}$, denotes the characteristic function of <i>X</i> , then which of the following is/are true?
(A)	$\phi_X(a)=1$
(B)	$\phi_X(\cdot)$ is periodic with period <i>a</i>
(C)	$ \phi_X(t) < 1$ for all $t \neq a$
(D)	$\int_0^{2\pi} e^{-itn} \phi_X(t) dt = \pi P\left(X = \frac{2\pi n}{a}\right), n \in \mathbb{Z}, \ i = \sqrt{-1}$
Q.50	Which of the following real valued functions is/are uniformly continuous on $[0,\infty)$?
(A)	$\sin^2 x$
(B)	$x \sin x$
(C)	$\sin(\sin x)$
(D)	$\sin(x\sin x)$

GATE :	2022 Statistics (S	Г)						"			
Q.51	Two independent random samples, each of size 7, from two populations yield the following values:										
	Population 1	18	20	16	20	17	18	14			
	Population 2	17	18	14	20	14	13	16			
	hypothesis H_0 : I hypothesis H_1 : I	If Mann-Whitney U test is performed at 5% level of significance to test the null hypothesis H_0 : Distributions of the populations are same, against the alternative hypothesis H_1 : Distributions of the populations are not same, then the value of the test statistic U (in integer) for the given data, is									
Q.52	Consider the multiple regression model										
	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon,$										
where ϵ is normally distributed with mean 0 and variance $\sigma^2 > \beta_0, \beta_1, \beta_2, \beta_3$ are unknown parameters. Suppose 52 observations of (Y, X_1, Y) yield sum of squares due to regression as 18.6 and total sum of squares as Then, for testing the null hypothesis $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ against the alt hypothesis $H_1: \beta_i \neq 0$ for some $i = 1, 2, 3$, the value of the test statistic (r off to three decimal places), based on one way analysis of variance, is								X_1, X_2, X_3 as 79.23 alternative			

GATE
Graduate Aptitude Test in Engineering
addecided more offeren plan

Q.53

Q.54

Q.55

GATE 2022 Statistics (ST)

Suppose a random sample of size 3 is taken from a distribution with the probability

density function	I								
	<i>c (</i>	(2 <i>x</i> ,	0 <	< <i>x</i> < 1	•)			
	f	$(x) = \begin{cases} x \\ x$	0,	0 < else	ewhere	2.			
If <i>p</i> is the probabilit sample observation is	-	-	-						
Let a linear model normally distribute								is	
	x _i	0	1	2	3	4			
	Уi	3	4	5	6	7			
Let \hat{Y}_0 denote the ordinary least-square estimator of Y at $X = 6$, and the variance of of $\hat{Y}_0 = c\sigma^2$. Then the value of the real constant c (rounded off to one decimal place) is equal to									
Let 0, 1, 1, 2, 0 be fi	ve obse	rvation	s of a ra	andom v	variable	<i>X</i> whice	ch follows a Poiss	son	

	y _i	3	4	5	6	7		
Let \hat{Y}_0 denote the ordinary least-square estimator of Y at $X = 6$, and the variance of of $\hat{Y}_0 = c\sigma^2$. Then the value of the real constant c (rounded off to one decimal place) is equal to								
	e param	eter θ >	> 0. Let	t the mi	nimum	varianc	ch follows a Poisson ce unbiased estimate s equal to	

100	-
16	24
10	Nº.
-	-

GATE	2022 Statistics (ST)
Q.56	While calculating Spearman's rank correlation coefficient, based on <i>n</i> observations $\{(x_i, y_i), i = 1, 2,, n\}$ from a paired data, it is found that x_i are distinct for all $i \ge 2, x_1 = x_2$, and $\sum_{i=1}^n d_i^2 = 19.5$, where $d_i = \operatorname{rank}(x_i) - \operatorname{rank}(y_i)$. Then the minimum possible value of $n^3 - n$ (in integer) is
Q.57	In a laboratory experiment, the behavior of cats are studied for a particular food preference between two foods A and B. For an experiment, 70% of the cats that had food A will prefer food A, and 50% of the cats that had food B will prefer food A. The experiment is repeated under identical conditions. If 40% of the cats had food A in the first experiment, then the percentage (rounded off to one decimal place) of cats those will prefer food A in the third experiment, is
Q.58	A random sample of size 5 is taken from a distribution with the probability density function
	f(x; θ) = $\begin{cases} \frac{3x^2}{\theta^3}, & 0 < x < \theta, \\ 0, & \text{elsewhere,} \end{cases}$ where θ is an unknown parameter. If the observed values of the random sample are 3, 6, 4, 7, 5, then the maximum likelihood estimate of the $\frac{1}{8}$ th quantile of the distribution (rounded off to one decimal place) is

GATE
Graduate Aphtude Test in Engineering

Q.59 Consider a gamma distribution with the probability density function

$$f(x;\beta) = \begin{cases} \frac{1}{24\beta^5} x^4 e^{-x/\beta}, & x > 0, \\ 0, & \text{elsewhere,} \end{cases}$$

with $\beta > 0$. Then, for $\beta = 2$, the value of the Cramer-Rao lower bound (rounded off to one decimal place) for the variance of any unbiased estimator of β^2 , based on a random sample of size 8 from this distribution, is _____

Q.60 Let X_1 , X_2 , X_3 , X_4 be a random sample of size four from a Bernoulli distribution with the parameter θ , $0 < \theta < 1$. Consider the null hypothesis $H_0: \theta = \frac{1}{4}$ against the alternative hypothesis $H_1: \theta > \frac{1}{4}$. Suppose H_0 is rejected if and only if $X_1 + X_2 + X_3 + X_4 > 2$. If α is the probability of Type I error for the test and $\gamma(\theta)$ is the power function of the test, then the value of $16\alpha + 7\gamma(\frac{1}{2})$ (in integer) is equal to _____

Q.61 Given that $\Phi(1.645) = 0.95$ and $\Phi(2.33) = 0.99$, where $\Phi(\cdot)$ denotes the cumulative distribution function of a standard normal random variable. For a random sample $X_1, X_2, ..., X_n$ from a normal population $N(\mu, 2^2)$, where μ is unknown, the null hypothesis $H_0: \mu = 10$ is to be tested against the alternative hypothesis $H_1: \mu = 12$. Suppose that a test that rejects H_0 if the sample mean \overline{X} is large, is used. Then the smallest value of n (in integer) such that Type I error is 0.05 and Type II error is at most 0.01, is _____

afteria Active afterna	2022 Statistics (ST)
JAIL	
Q.62	Let $Y_1 < Y_2 < \dots < Y_n$ be the order statistics of a random sample of size <i>n</i> from a continuous distribution, which is symmetric about its mean μ . Then the smallest value of <i>n</i> (in integer) such that $P(Y_1 < \mu < Y_n) \ge 0.99$, is
Q.63	If $P(x, y, z)$ is a point which is nearest to the origin and lies on the intersection of the surfaces $z = xy + 5$ and $x + y + z = 1$. Then the distance (in integer) between the origin and the point P is
Q.64	Let X and Y be random variables such that X is uniformly distributed over $(0, 4)$, and the conditional distribution of Y given $X = x$ is uniformly distributed over $\left(0, \frac{x^2}{4}\right)$. Then $E(Y^2)$ (rounded off to three decimal places) is equal to
Q.65	Let $\mathbf{X} = (X_1, X_2, X_3)^T$ be a random vector with the distribution $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where
	$\boldsymbol{\mu} = \begin{pmatrix} 3 \\ 2 \\ 4 \end{pmatrix}$ and $\boldsymbol{\Sigma} = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.
	Then $E(X_1 (X_2 = 4, X_3 = 7))$ (in integer) is equal to

Q. No.	Session	Question	Subject	Key/Range	Mark
1	2	Туре	Name		1
1	3	MCQ	GA	С	1
2	3	MCQ	GA	D	1
3	3	MCQ	GA	В	1
4	3	MCQ	GA	B	1
5	3	MCQ	GA	С	1
6	3	MCQ	GA	D	2
7	3	MCQ	GA	С	2
8	3	MCQ	GA	С	2
9	3	MCQ	GA	В	2
10	3	MCQ	GA	В	2
11	3	MCQ	ST	D	1
12	3	MCQ	ST	В	1
13	3	MCQ	ST	В	1
14	3	MCQ	ST	В	1
15	3	MCQ	ST	С	1
16	3	MCQ	ST	С	1
17	3	MCQ	ST	А	1
18	3	MCQ	ST	A	1
19	3	MCQ	ST	В	1
20	3	MCQ	ST	С	1
21	3	MCQ	ST	С	1
22	3	NAT	ST	12 to 12	1
23	3	NAT	ST	0.25 to 0.25	1
24	3	NAT	ST	22 to 22	1
25	3	NAT	ST	0.55 to 0.59	1
26	3	NAT	ST	2.30 to 2.32	1
27	3	NAT	ST	23 to 23	1
28	3	NAT	ST	243 to 243	1
29	3	NAT	ST	0.57 to 0.59	1
30	3	NAT	ST	1 to 1	1
31	3	NAT	ST	1.18 to 1.19	1
32	3	NAT	ST	12 to 12	1
33	3	NAT	ST	15 to 15	1
34	3	NAT	ST	0.375 to 0.375	1
35	3	NAT	ST	3 to 3	1
36	3	MCQ	ST	A	2
37	3	MCQ	ST	C	2
38	3	MCQ	ST	A	2
39	3				2
	+	MCQ	ST	A	
40	3	MCQ	ST	A	2
41	3	MCQ	ST	A	2
42	3	MCQ	ST	A	2
43	3	MCQ	ST	В	2
44	3	MCQ	ST	A	2

45	3	MSQ	ST	A, B, D	2
46	3	MSQ	ST	A, B, D	2
47	3	MSQ	ST	A, D	2
48	3	MSQ	ST	В, С	2
49	3	MSQ	ST	А, В	2
50	3	MSQ	ST	A, C	2
51	3	NAT	ST	15 to 15	2
52	3	NAT	ST	4.907 to 4.909	2
53	3	NAT	ST	0.436 to 0.439	2
54	3	NAT	ST	1.8 to 1.8	2
55	3	NAT	ST	512 to 512	2
56	3	NAT	ST	60 to 60	2
57	3	NAT	ST	61.5 to 61.7	2
58	3	NAT	ST	3.5 to 3.5	2
59	3	NAT	ST	1.6 to 1.6	2
60	3	NAT	ST	3 to 3	2
61	3	NAT	ST	16 to 16	2
62	3	NAT	ST	8 to 8	2
63	3	NAT	ST	3 to 3	2
64	3	NAT	ST	1.065 to 1.069	2
65	3	NAT	ST	6 to 6	2