General Aptitude (GA)

Q. 1 - Q. 5 Carry ONE mark Each

Q.1	If ' \rightarrow ' denotes increasing order of intensity, then the meaning of the words [sick \rightarrow infirm \rightarrow moribund] is analogous to [silly \rightarrow Which one of the given options is appropriate to fill the blank?
(A)	frown daft].
(B)	fawn
(C)	vein
(D)	vain

Q.2	The 15 parts of the given figure are to be painted such that no two adjacent parts with shared boundaries (excluding corners) have the same color. The minimum number of colors required is
(A)	4
(B)	3
(C)	5
(D)	6

Q.3	How many 4-digit positive integers divisible by 3 can be formed using only the digits $\{1,3,4,6,7\}$, such that no digit appears more than once in a number?
(A)	24
(B)	48
(C)	72
(D)	12
Q.4	The sum of the following infinite series is
(B)	$7 / 2$
(C)	$13 / 4$
(D)	$9 / 2$
	$11 / 3$

Q. 5	In an election, the share of valid votes received by the four candidates A, B, C, and D is represented by the pie chart shown. The total number of votes cast in the election were $1,15,000$, out of which 5,000 were invalid. Share of valid votes Based on the data provided, the total number of valid votes received by the candidates B and C is
(A)	45,000
(B)	49,500
(C)	51,750
(D)	54,000

Q. 6 - Q. 10 Carry TWO marks Each

Q.6	Thousands of years ago, some people began dairy farming. This coincided with a number of mutations in a particular gene that resulted in these people developing the ability to digest dairy milk. Based on the given passage, which of the following can be inferred?
(A)	All human beings can digest dairy milk.
(B)	No human being can digest dairy milk.
(C)	Digestion of dairy milk is essential for human beings.
(D)	In human beings, digestion of dairy milk resulted from a mutated gene.
Q.7	The probability of a boy or a girl being born is $1 / 2$. For a family having only three children, what is the probability of having two girls and one boy?
(C)	$1 / 4$
(D)	$1 / 8$
(B)	$1 / 8$

Q. 9	Three different views of a dice are shown in the figure below. The piece of paper that can be folded to make this dice is
(A)	5 1 4 6 2 3
(B)	5 1 4 2 6 3
(C)	$\begin{array}{\|l\|l\|} \hline 5 & 1 \\ \hline & 3 \\ \hline & 2 \\ \hline & \\ \hline & 4 \\ \hline \end{array}$
(D)	5 1 4 6 3 2

Q.10	Visualize two identical right circular cones such that one is inverted over the other and they share a common circular base. If a cutting plane passes through the vertices of the assembled cones, what shape does the outer boundary of the resulting cross-section make?
(A)	A rhombus
(B)	A triangle
(C)	An ellipse
(D)	A hexagon

Q. 11 - Q. 35 Carry ONE mark Each

Q.11	Ten cards in a pack are numbered as 1, 2, 3, ..10. The probability of drawing a card with an even number or a number which is a multiple of 5 from the pack is (A) $4^{4 / 10}$
(B)	$6 / 10$
(C)	$2 / 10$
(D)	$3 / 10$
Q.12	Hardness in water is NOT caused by
(A)	Ca^{2+}
(B)	Si^{2+}
(C)	CO_{3}^{2+}
(D)	

Q.13	The maximum coordination number of ${S n^{4+} \text { is }}_{\text {(A) }}$(B) 8 (C) 6 (D) 2 Q.14 Rod shaped bacterial cells are called (A) Bacilli (B) Cocci (C) Spirilla (D) Diplococci

Q. 19	The environmental temperature increases by $6^{\circ} \mathrm{C} / \mathrm{km}$ with height at a particular location. The stability condition of the atmosphere at the location is \qquad
(A)	stable
(B)	unstable
(C)	inversion
(D)	neutral
Q. 20	As per the United Nations agenda for sustainable development adopted in September 2015, the number of Sustainable Development Goals (SDGs) are \qquad and the proposed target year to achieve them is \qquad -
(A)	15; 2035
(B)	17; 2030
(C)	20; 2050
(D)	18;2047

Q.21	Which one of the following is NOT a greenhouse gas?
(A)	CO_{2}
(B)	CH_{4}
(C)	$\mathrm{H}_{2} \mathrm{~S}$
(D)	$\mathrm{H}_{2} \mathrm{O}$
Q.22	As per the United Nations Environmental Program (UNEP) guidelines 2004, the maximum size of microplastics is (A) (B) (C) mm (D) $10 \mu \mathrm{~mm}$

Q23	The costliest functional element in an urban centralized Municipal Solid Waste management infrastructure for a typical Indian Tier I city is (A) (B) collection and transport (C) disposal in a sanitary landfill (D) thermal treatment Q.24 The eigen values of the matrix $\left[\begin{array}{ll\|}4 & 3 \\ 3 & 4\end{array}\right]$ are (A) (B)
	7
(D)	7

Q.27	In a rectangular open channel, the flow is critical, and the flow depth is 2 m. Select the correct statement(s)
(A)	Specific energy for the flow is 3.0 m
(B)	Specific energy for the flow is 2.0 m
(C)	Froude number is 1.0
(D)	Froude number is 1.5 Qith respect to particle settling in wastewater treatment systems; the correct statement(s) is/are
(A)	Settling in grit chamber and primary sedimentation tanks are examples of Type-I settling
(B)	Settling in primary sedimentation tank and secondary sedimentation tank are examples of Type-II settling
(C)	Settling in grit chamber is an example of Type-I settling, whereas settling in primary sedimentation tank is an example of Type-II settling settling in primary sedimentation tank is an example of Type-II settling
(D) whereas	

Q.29	The equipment that can be used to control particulate air pollution in an industrial unit is/are
(A)	Electrostatic precipitator
(B)	Cyclone separator
(C)	Gravity settler
(D)	Incinerator
Q.30	Which is/are the secondary air pollutant(s)? $^{\text {(A) }}$
(B)	HNO_{3}
(C)	CO_{2}
(D)	$\mathrm{H}_{2} \mathrm{SO}_{4}$

Q.31	As per the Hazardous Waste (Management and Handling) Rules, 2016, of India, which is/are the characteristic(s) that must be exhibited by a waste to be classified as a "characteristic" hazardous waste?
(A)	Ignitability
(B)	Reactivity
(C)	Radioactivity
(D)	Toxicity in the range $x=-2$ to +2.
32	Q(x)= $x^{3}-4.5 x^{2}-12 x$ has a local maximum at $x=$ Q. 33 Consider the equation $\frac{d y}{d x}-x^{2}+e^{x}=0$; with $y=1$ at $x=0$.
The value of y at $x=1$ is	
Take the value of e (base of natural logarithm) as 2.7.	

Q.35	A Class-A pan was setup adjacent to a lake for measuring evaporation losses in the lake. The depth of water in the pan at the beginning of a certain week was 250 mm . In that week, there was a rainfall event with 10 mm depth. Water depth in the pan at the end of the week was 240 mm. The pan coefficient is 0.8. The estimated lake evaporation during the week was__ mm (an integer value).

Q. 36 - Q. 65 Carry TWO marks Each

dISC Bengaluru

Q.39	Consider second order kinetics $\left(r_{c}=-k C^{2}\right)$ under steady state condition. The ratio of volume of a complete mixed reactor (CMR) to that of a plug flow reactor (PFR) to achieve 90% reduction in the concentration is Inlet concentrations in both the reactors are same.
(A)	10.0
(B)	1.0
(C)	0.1
(D)	2.3

Q.41	A gravity settling chamber of height ' H ' and length ' L ' is designed to control particulate air pollution. In the chamber, the horizontal velocity of air flow is ' V_{h} ' and terminal settling velocity of the target particle is ' V_{t} '. Which one of the following expressions is the correct concept used to calculate the minimum size of the target particle that will be removed with 100% efficiency?
(A)	$\frac{V_{t}}{L}=\frac{V_{h}}{H}$
(B)	$V_{h} \times V_{t}=L \times H$
(C)	$V_{h}=V_{t} \times L \times H$
(D)	$\frac{V_{t}}{H}=\frac{V_{h}}{L}$
Q.42	Consider the function $f(x)=\ln ($ sin $(x))$.
Expand $f(x+h)$ using Taylor's series. In this context, the correct statement(s) is/are	
(C)	Third term in the Taylor's series i.e., the term which includes h^{2} is: $\frac{-h^{2}}{2(\sin (x))^{2}}$
(A)	Second term in the Taylor's series i.e., the term which includes h is: $h . \ln (\sin (x))$
First term is $\ln (\sin (x))$	

Q.45	Which of the following statement(s) is/are CORRECT?
(A)	DNA is composed of nucleotides.
(B)	Five types of nitrogenous bases occur in DNA.
(C)	Each phosphate is attached to two deoxyribose units in a single strand of DNA.
(D)	The ratio of adenine to guanine is always 1:1 in a double stranded DNA.
Q.46	The Streeter-Phelp's oxygen sag equation for a river is based on a few assumptions. The correct assumption(s) is/are
(A)	At any instant the deoxygenation rate is directly proportional to the amount of oxidizable organic material present.
(B)	At any instant the deoxygenation rate is inversely proportional to the amount of oxidizable organic material present.
(C)	The reoxygenation rate is directly proportional to the dissolved oxygen deficit.
(D)	The reoxygenation rate and deoxygenation rate are directly proportional to the saturation concentration of dissolved oxygen.
	(B)

Q.47	Water is flowing FULL through a rectangular tunnel of size 3 m (width) $\times 2 \mathrm{~m}$ (height). The average velocity of flow is $1 \mathrm{~m} / \mathrm{s}$. The frictional head loss is observed to be 1 m per km. Consider acceleration due to gravity (g) as $10 \mathrm{~m} / \mathrm{s}^{2}$. The correct statement(s) is $/$ are
(A)	Hydraulic radius is 0.6 m
(B)	Darcy-Weisbach friction factor is 0.048
(C)	Hydraulic radius is 2 m
(D)	Darcy-Weisbach friction factor is 0.024

$1-2-1$

Q. 48	Based on the ISO 14040 methodology for Life Cycle Assessment, match the terms with the descriptions in the table.	
	Term	Description
	(a) Goal and Scope	(i) Based on the product or system, the comparative unit must be carefully defined and be same for all scenarios
	(b) Functional Unit	(ii) The problem is described, and the objective of the study are defined
	(c) Life Cycle Inventory	(iii) Evaluates the environmental implications due to the inventorized emissions
	(d) Impact Assessment	(iv) Process based approach and input-output approach
	The correct match(es) is/are	
(A)	(a)-(ii); b-(i);	
(B)	(a)-(iii), b-(i)	
(C)	(c)-(iii), (d)-(iv)	
(D)	(c)-(iv), (d)-(iii)	
Q. 49	Consider the equation for a curve, $y=f(x)=x^{2}+x$. The area enclosed by the curve, the x-axis ($y=0$ line); the vertical lines passing through $x=1$ and $x=2$ is \qquad (rounded off to 2 decimal places)	
Q. 50	The pH of a solution containing 0.1 M of acetic acid and 0.05 M of sodium acetate is \qquad (rounded off to 2 decimal places). The pK_{a} value of ionization of acetic acid is 4.76 .	

Q. 51	The ionic strength of a solution containing 0.01 M of CaCl_{2} and 0.001 M of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is \qquad M (rounded off to 3 decimal places).
Q. 52	The concentration of Ozone corresponding to a mixing ratio of 120 ppbv at pressure of 1 atmosphere and temperature of $25^{\circ} \mathrm{C}$ is \qquad $\mu \mathrm{g} / \mathrm{m}^{3}$ (rounded off to 1 decimal place). Atomic weight of oxygen $=16 ; \mathrm{R}=8.314 \mathrm{~J} / \mathrm{K}-\mathrm{g} . \mathrm{mole}$.
Q. 53	One million liters per day (MLD) of wastewater with a soluble BOD of $200 \mathrm{mg} / \mathrm{L}$ is treated in an activated sludge process. The BOD of treated wastewater is $20 \mathrm{mg} / \mathrm{L}$. The observed yield coefficient of the biological system is 0.35 . The daily biomass generation in the system is \qquad kg (an integer value).
Q. 54	An industry discharges 2 million liters per day (MLD) of wastewater with a temperature of $45^{\circ} \mathrm{C}$ and a pH of 2 , whereas the neighboring industry produces 3 MLD of wastewater with a temperature of $30^{\circ} \mathrm{C}$ and pH of 8 . If both the wastewaters are mixed and carried through a pipeline, then the resultant pH of mixed wastewater is \qquad (rounded off to 2 decimal places). Neglect buffering capacity of the system and the temperature effect on pH .

Q. 55	Consider a watershed and isohyets as shown in the figure. The average rainfall in the watershed is \qquad mm (an integer value).
Q. 56	With reference to the gate shown in the figure, the gate will start opening automatically when the water level ' h ' above the hinge is \qquad m (rounded off to 2 decimal places).

Q. 57	In a cyclone separator of radius 25 cm , a particle is travelling with a gas stream at velocity of $18 \mathrm{~m} / \mathrm{s}$. The ratio of centrifugal force to the gravitational force acting on the particle is \qquad (rounded off to 2 decimal places). Consider acceleration due to gravity (g) as $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Q. 58	Two sources of noise, adjacent to each other in a room, have sound pressure levels of 30 and 40 decibel (dB). The combined sound pressure level in the room is \qquad dB (rounded off to 2 decimal places). Use reference sound pressure as $20 \mu \mathrm{~Pa}$.
Q. 59	An industrial stack emits $100 \mathrm{~g} / \mathrm{s}$ of CO at an effective height of ' H ', where the wind speed is $5 \mathrm{~m} / \mathrm{s}$. At 3 km distance downwind, the values of dispersion coefficient in ydirection and z-direction are 50 m and 25 m , respectively. The CO concentration at the centerline of the plume at 3 km distance downwind is \qquad $\mathrm{mg} / \mathrm{m}^{3}$ (rounded off to 2 decimal places)? Use Gaussian plume model and value of $\pi=3.14$. Neglect reactions and the ground effect of plume in the calculations.
Q. 60	Two hypothetical organic waste streams A and B are mixed prior to the composting process. Waste-A has 2.16% of C and 1.20% of N. Waste-B has 19.10% of C and 0.14% of N. The quantity of Waste-B that should be mixed with per kg of Waste-A to achieve the desired $\mathrm{C}: \mathrm{N}$ ratio of 25 is \qquad kg (rounded off to 2 decimal places). Assume both the waste streams are completely dry.

Y 21
dISC Bengaluru

Q. 61	Food waste, paper waste and plastic waste have typical densities of $280 \mathrm{~kg} / \mathrm{m}^{3}, 80 \mathrm{~kg} / \mathrm{m}^{3}$, and $50 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. The mixed waste is composed of 70% food waste, 20% paper waste and 10% plastic waste. The density of the mixed waste is \qquad $\mathrm{kg} / \mathrm{m}^{3}$ (rounded off to 2 decimal places). Neglect compaction effect.
Q. 62	For a biodegradable waste with a chemical formula $\mathrm{C}_{50} \mathrm{H}_{100} \mathrm{O}_{40} \mathrm{~N}$, the maximum theoretical methane production per ton of waste is \qquad kg (rounded off to 2 decimal places). Assume 100% anaerobic conversion. Atomic weights of C-12; H-1; O-16; N-14
Q. 63	A person consumes 2.5 liters of water per day. The water quality test indicated that the supplied water has a Pb concentration of $0.6 \mathrm{mg} / \mathrm{L}$. If the weight of the person is 75 kg , the exposure level for Pb for this person from this drinking water source is \qquad $\mathrm{mg} / \mathrm{kg} / \mathrm{day}$ (rounded off to 2 decimal places).
Q. 64	In a region, total annual consumption of gasoline is 30.6 million tons. The land required for growing sugarcane to produce enough bioethanol to replace the gasoline completely is \qquad km^{2} (an integer value). Ethanol energy equivalent is 67% of gasoline, gasoline density is $850 \mathrm{~kg} / \mathrm{m}^{3}$, yield of bioethanol produced from sugarcane per hectare of land is 3750 L , and $1 \mathrm{~km}^{2}=100$ hectares.
Q. 65	Initially a bottle contained 400 g of ethanol. Half of ethanol was used by a student for preparing the stock solution in an environmental chemistry laboratory just before summer vacation of 90 days. After completing the procedure, the student left the bottle uncorked. If the unsealed bottle losses ethanol at a rate of $0.5 \mathrm{~g} / \mathrm{day}$, the ethanol that will be left in the bottle at the end of the summer vacation is \qquad g (an integer value).

